
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 2674–2706

www.elsevier.com/locate/jcp
A balanced force refined level set grid method for
two-phase flows on unstructured flow solver grids

M. Herrmann

Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287, USA

Received 13 February 2007; received in revised form 1 November 2007; accepted 6 November 2007
Available online 17 November 2007
Abstract

A balanced force refined level set grid method for two-phase flows on structured and unstructured flow solver grids is
presented. To accurately track the phase interface location, an auxiliary, high-resolution equidistant Cartesian grid is intro-
duced. In conjunction with a dual-layer narrow band approach, this refined level set grid method allows for parallel, effi-
cient grid convergence and error estimation studies of the interface tracking method. The Navier–Stokes equations are
solved on an unstructured flow solver grid with a novel balanced force algorithm for level set methods based on the
recently proposed method by Francois et al. [M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian,
M.W. Williams, A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume
tracking framework, J. Comput. Phys. 213 (2006) 141–173] for volume of fluid methods on structured grids. To minimize
spurious currents, a second order converging curvature evaluation technique for level set methods is presented. The results
of several different test cases demonstrate the effectiveness of the proposed method, showing good mass conservation prop-
erties and second order converging spurious current magnitudes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In liquid/gas flows, surface tension forces often play an important role. For example, during the atomiza-
tion of liquid jets by coaxial fast-moving gas streams, the details of the formation of small-scale drops from
aerodynamically stretched out ligaments is governed by capillary forces [32]. From a numerical point of view,
surface tension poses a unique challenge since it is a singular force, active only at the location of the phase
interface. In addition, the situation is further complicated by the fact that material properties, like density
and viscosity, exhibit a discontinuity at the same location.
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One of the prerequisites for correctly treating surface tension forces is therefore the ability to locate the
position of the phase interface accurately. To this end, several phase interface tracking schemes exist for fixed
grid flow solvers, among them the marker method [56], the volume-of-fluid (VoF) method [19] and the level
set method [52]. Each of these tracking methods has it is advantages and disadvantages, such that no clear
gold-standard has emerged that is applicable to the wide range of possible two-phase flow phenomena. In this
work, we will track the phase interface by a level set method. Level set methods are efficient, handle topology
changes automatically, can directly solve for interfaces moving normal to themselves due to, for example,
phase change and are easy to implement in parallel. Their main drawback is that liquid volume conservation
is not guaranteed. Thus, hybrid methods have been proposed that make use of better volume conservation
properties of an auxiliary interface tracking method to correct the level set representation of the interface.
Among these are the particle level set method [13] using marker particles, or the CLSVOF method [51]
and MCLS method [57] using the volume of fluid method. However, errors in the level set representation
of the interface position are detected and corrected locally, thus potentially resulting in significant fluctuations
in the higher derivatives of the level set scalar, i.e. the curvature or curvature derivative [21]. While de-local-
ization techniques of the error correction can partly avoid this problem [11], both correction and de-localiaz-
tion add an additional level of complexity to the scheme that is not always desired. Since the observed volume
conservation error in level set methods is proportional to the employed grid resolution, an alternative
approach is to employ fine enough grids to control the error. AMR techniques can be used to adaptively
refine the grid in the vicinity of the interface, see for example [4,27,49,63], however these methods are usually
complex in parallel applications and difficult to domain-decompose efficiently, unless block or patch refine-
ment strategies are used [34,49].

In this paper, we propose to follow an alternative approach, termed refined level set grid (RLSG) method.
In many technical applications of two-phase flows, like for example the atomization of liquid jets and sheets,
the same high grid resolution is required virtually everywhere along the phase interface. Thus, a more practical
approach is to uniformly refine the grid surrounding the phase interface. To avoid complex data structures like
oct-trees, we propose to solve the level set equations on a separate, high resolution, equidistant Cartesian grid.
The flow solver grid on which the two-phase Navier–Stokes equations are solved is independent of the level set
grid and can be either structured or unstructured. To a certain extent the RLSG method is similar to the
recently proposed narrow-band locally refined level set (NBLR-LS) approach by Gomez et al. [18]. However,
the latter uses two-different grid levels of the same base grid and thus assumes a tight geometric coupling
between the two grids. It is furthermore limited to Cartesian grids, whereas the RLSG method can deal with
arbitrary unstructured finite volume flow solver meshes.

Unstructured grid methods for computing surface tension driven flows have been proposed in the past,
mostly based upon finite element approaches [30,31,59,63]. These methods solve both the level set equation
and the Navier–Stokes or Stokes equations on the same grid. However, since the RLSG method allows for
the independent refinement of the interface tracking grid, grid convergence studies with respect to the interface
tracking error can easily be performed. Furthermore, the approach allows for a separation of the error associ-
ated with the level set interface tracking scheme from the error associated with the solution of the Navier–Stokes
equations since both grids can be independently refined enabling the calculation of separate error estimates.

Different strategies exist to discretize the surface tension force once the location of the phase interface is
known. The most commonly used method is due to Brackbill et al. [7] called Continuum Surface Force
(CSF). Here, the ideally singular surface tension force is spread into a narrow band surrounding the phase
interface by the use of regularized delta functions. These can take the form of a discrete derivative of a Heav-
iside scalar (the volume fraction in VoF methods, or a Heaviside transform of the level set scalar [49]), or
smoothed delta functions, like the popular cosine approximation due to Peskin [38] in level set methods . Espe-
cially in level set methods, the use of smoothed delta functions can be problematic, since convergence under
grid refinement is only guaranteed for certain, not commonly employed delta function approximations [12].

The CSF method is prone to generating unphysical flows, so-called spurious currents, near the location of
the phase interface when surface tension forces are present. In the canonical test cases of an equilibrium col-
umn and an equilibrium sphere, these velocity errors can grow unbounded very fast, if they are not artificially
damped by introducing viscosity. The amplitude of the spurious currents when damped by viscosity is of the
order of u � 0:01r=l for classical VoF and level set methods and u � 10�5r=l for marker methods [43], where



2676 M. Herrmann / Journal of Computational Physics 227 (2008) 2674–2706
r is the surface tension coefficient and l is the viscosity. At small l, depending on the quality of the employed
numerical schemes, numerical viscosity can be dominant, resulting in an artificial decrease of the spurious cur-
rents as compared to r=l [62]. Still, grid converged numerical simulations are limited by a critical Laplace
number, La ¼ rqR=l2, where q is the density and R is a characteristic phase interface radius of curvature, since
for large La, i.e., large r, spurious currents start to dominate the physical flow [43].

The reason for the occurence of spurious currents is twofold. The first reason is a potential discrete imbal-
ance on collocated grids between the surface tension force and the associated pressure jump across the phase
interface [16]. To address this source of error, Young et al. [60] proposed a modification to the procedure of
Kim et al. [24] to regain discrete consistency. However, they were using the CSF method with smoothed out
delta functions in a level set context and, hence, the exact discrete balance was not achieved. Francois et al.
[16] proposed a so-called ‘‘balanced force algorithm” for VoF schemes on structured Cartesian meshes that
discretely balances the surface tension force and the associated pressure jump across the interface. In that
paper, the discrete evaluation of the delta function as the derivative of the volume fraction scalar naturally
results in the discrete balance when following a similar approach to the one proposed in Young et al. [60].
The approach by Francois et al. [16] eliminates spurious currents up to machine precision zero, if the interface
curvature is prescribed exactly. Similar results can be obtained using the ghost fluid method (GFM) proposed
in Fedkiw et al. [15] or the sharp interface method by Sussman et al. [53]. Here, jump conditions and the sur-
face tension force are applied as singular source terms directly at the location of the phase interface, thereby
directly avoiding a potential discrete imbalance of these terms.

The second source of error is due to errors associated with evaluating phase interface curvature. This source
of error is typically independent of the way the surface tension force and pressure gradient/jump are treated
and occurs thus in CSF, balanced force, sharp interface and GFM applications alike. Different strategies exist
to increase the accuracy of curvature evaluation. For VoF methods, the height-function approach [48,50]
allows second-order or higher converging curvature calculation. However, the required stencil sizes are large
and thus problematic for interfaces close to each other, unless a recently proposed corrective procedure is
employed [50]. For level set methods, curvature at the node location can be calculated with high-order accu-
racy, however, this approximates the phase interface curvature only to first order, due to the fact that nodal
location and phase interface position typically do not coincide. To enhance accuracy, additional interpolation
techniques are required [28].

In this paper, we will extend the balanced force algorithm of Francois et al. [16] and Young et al. [60] to
unstructured flow solver grids using the RLSG level set method to track the phase interface. To achieve sec-
ond-order converging curvature evaluation, an interface projected curvature evaluation method is proposed.
The performance of the balanced force RLSG method is demonstrated analyzing inviscid and viscous equilib-
rium columns and spheres, zero-gravity oscillating columns and spheres, and damped surface waves on struc-
tured and unstructured flow solver grids. Finally, to demonstrate the capability of the new method in complex
flows, a Rayleigh–Taylor instability is presented.

2. Governing equations

The equations governing the motion of an unsteady, incompressible, immiscible, two-fluid system are the
Navier–Stokes equations:
ou

ot
þ u � ru ¼ � 1

q
rp þ 1

q
r � ðlðruþrTuÞÞ þ g þ 1

q
Tr; ð1Þ
where u is the velocity, q the density, p the pressure, l the dynamic viscosity, g the gravitational acceleration
and Tr the surface tension force which is non-zero only at the location of the phase interface xf ,
TrðxÞ ¼ rjdðx� xf Þn; ð2Þ

with r the assumed constant surface tension coefficient, j the local mean surface curvature, n the local surface
normal and d the delta-function. Furthermore, the continuity equation results in a divergence-free constraint
on the velocity field,
r � u ¼ 0: ð3Þ
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The phase interface location xf between the two fluids is described by a level set scalar G, with
Gðxf ; tÞ ¼ 0 ð4Þ

at the interface, Gðx; tÞ > 0 in fluid 1 and Gðx; tÞ < 0 in fluid 2. Differentiating Eq. (4) with respect to time
yields the level set equation,
oG
ot
þ u � rG ¼ 0: ð5Þ
For numerical accuracy it is advantageous, although not necessary, to define the level set scalar away from
the interface to be a signed distance function,
jrGj ¼ 1: ð6Þ

Assuming q and l constant within each fluid, density and viscosity at any point x can be calculated

from
qðxÞ ¼ HðGÞq1 þ ð1� HðGÞÞq2 ð7Þ
lðxÞ ¼ HðGÞl1 þ ð1� HðGÞÞl2; ð8Þ
where indices 1 and 2 denote values in fluid 1, respectively 2 and H is the Heaviside function. Finally, the inter-
face normal vector n and the interface curvature j can be expressed in terms of the level set scalar as
n ¼ rG
jrGj ; j ¼ r � n: ð9Þ
In summary, Eqs. (1), (3) and (5) have to be solved jointly to describe the incompressible, immiscible two-
fluid system.

3. Numerical methods

In this section, we first describe the RLSG method used to solve the level set equation and discuss how the
RLSG level set solution is coupled to structured and unstructured flow solver grids. Next, the level set-based
balanced force algorithm for unstructured flow solver grids is presented and the performance of the resulting
method is illustrated using the canonical test cases of equilibrium columns and spheres prescribing curvature
exactly. Then, the method to calculate second-order converging interfacial curvatures is outlined. Finally,
results are presented for curvature evaluation of columns and spheres on structured and unstructured flow
solver grids.

3.1. Refined level set grid method

The key idea of the RLSG method is to solve all level set related equations on an additional, separate, equi-
distant, Cartesian grid, termed G-grid in the following. The grid for the flow solver, on the other hand, can be
either structured or fully unstructured containing arbitrary elements. Since both grids, the G-grid and the flow
solver grid are separate, the G-grid can be independently refined to ensure a grid converged interface repre-
sentation respecting the externally defined liquid volume conserving flow field. However, the potential draw-
back of the RLSG method is that the thus required G-grid resolution could be prohibitively expensive, both in
computational time and in memory. A number of different compression techniques have been proposed in the
past to address this issue, see for example [8,22,33]. While these schemes are amenable to thread-level paral-
lelism, domain decomposition parallelization is not straightforward. To achieve an efficient domain decompo-
sition parallel implementation with straightforward dynamic load balancing and direct access to random
nodes, the following two-level narrow band methodology is introduced.

On the first level, the flow solver grid is overlaid by an equidistant Cartesian super-grid encompassing that
part of the computational domain where the interface might exist; see Fig. 1. Only those super-grid cells, or
blocks, that contain part of the interface or are within a predefined distance from the interface are activated
and stored in linked lists distributed among the processors partaking in the simulation. Note that this feature



Fig. 1. RLSG grid definitions.
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resembles the sparse block grid method proposed by Bridson [8]. To ensure fast and direct access to each
block, each processor stores a copy of a super-grid integer i; j; k lookup table that contains either the
super-grid block number if the block is local, or the negative value of the processor id where the block is
stored.

On the second level, each active block contains an equidistant Cartesian grid of grid cell size hG; see Fig. 1.
Again, only those grid cells that contain part of the interface or are a predefined distance away from the inter-
face are activated and stored. Note that the active cells thus form a band around the tracked interface.

The above approach effectively reduces the number of cells that are stored and on which the level set equa-
tions have to be solved from OðN 3Þ to OðN 2Þ, where N is the number of cells in each spatial direction. This
allows for high resolution of the interface, because at any given moment, only that small fraction of cells
are active and stored that is in a small band around the interface. All active cells are stored in linked lists.
However, each block stores for each grid cell a direct pointer into the linked list to allow for direct, fast access
for arbitrary i; j; k coordinates.

To demonstrate the efficiency of the approach, consider a super-grid of size 1283 and a local block size of
323. This yields a theoretical maximum resolution of slightly less than 70 billion cells. Assuming the number of
active blocks to be 2 � 1282, the lookup tables for the super-grid and local blocks take up only 40 MB of stor-
age space using 128 processors (8 MB for the super-grid on each processor plus 32 MB for the processor’s
share of the local look-up tables). A global lookup table not using the dual level approach, on the other hand,
would take 2 GB per processor. Assuming furthermore that 10� 322 cells are active inside each active super-
grid block, storage requirements for a double precision level set scalar value on each of the 128 processors is
roughly 20 MB, well within the memory size of modern distributed memory massively parallel machines. The
G-grid can thus efficiently provide flow solver sub-grid resolution of the phase interface.
Fig. 2. RLSG time step.
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Fig. 2 outlines the sequence of operations of a RLSG time step. The time step size Dt is determined by the
flow solver, thus in an initial step, a CFL-based criterion is used to determine the number of required time step
sub-cycles nG to advance the level set solution by Dt. Then, in each sub-cycling step, the level set transport
equation, Eq. (5) is solved and a re-initialization trigger condition is evaluated. Should re-initialization be trig-
gered, the band structure is regenerated before the level set scalar is re-initialized. After completion of all
required sub-cycling steps, the G-grid is load balanced to ensure good parallel performance. The following
subsections describe each individual step of the RLSG time step in detail.

3.1.1. Band generation

As outlined in the previous section, all level set equations are solved only on a narrow band around the
interface. Since the interface can move through the computational domain, the band has to be regenerated
frequently. The idea of using narrow bands or tubes to limit the computational cost was introduced in Adal-
steinsson and Sethian [1] and Peng et al. [37]. While the former algorithm uses tubes consisting of two-dimen-
sional square patches, the latter method builds the narrow band in terms of the G-scalar value, requiring G to
be a signed distance function. Since using square patches is not efficient in three dimensions and G cannot be
guaranteed to be close to a signed distance function at all times, we will employ a band growth algorithm that
grows the band outwards from the interface location.

The algorithm to generate a band of width 2ni is described in Figs. 3 and 4. Its main idea is to grow the
narrow band one layer at a time, marking all cells that are already part of the band as the body ðBÞ, the current
outer layer of the body as the skin ðSÞ and the new band layer as cloth ðCÞ, see Fig. 4.

In an initial step, all cells directly adjacent to the interface, i.e. cells with any Gi;j;kGi�1;j;k 6 0 or
Gi;j;kGi;j�1;k 6 0 or Gi;j;kGi;j;k�1 6 0, are tagged as S. To grow the band by one layer, a cloth layer is grown
by marking all unmarked cells directly adjacent to S-cells as C. Here, directly adjacent again refers to any
of the six neighbors of a cell in the three coordinate directions. If a new cloth cell did not previously exist,
a new cell is generated and added. Special care must be taken in the parallel version of this algorithm, since
the cloth layer can grow across domain boundaries. If the cloth layer grows into a local ghost cell, see Fig. 1,
these cloth ghost cells are copied into their partner boundary cells in the adjacent super-grid block at the end
of the cloth growth step. If not previously existing, that super-grid block is allocated and added to the list of
Fig. 3. Band generation algorithm.

Fig. 4. Band growth example, from left to right: mark G ¼ 0 adjacent cells as S, mark all unmarked neighbors of S as C, mark all S cells as
B and all C cells as S, mark all unmarked neighbors of S as C.
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active super-grid blocks. Finally, the skin layer is absorbed into the body by marking all S-cells as B and the
cloth layer becomes the new skin layer by marking all C-cells as S. Linked lists are used for the skin, cloth and
body lists, in order to avoid costly memory copy operations since the number of cells inside the band are not
known a-priori. In the manner described above, four different bands are generated, termed T -, N -, W- and
X -band, used for transport, re-initialization, WENO-stencil and volume integration, respectively. The
employed widths of the bands are similar to the ones proposed in Herrmann [21]: nT ¼ 8, nN ¼ 3, nW ¼ 3
and nX ¼ max int

ffiffiffi
3
p

h=hG � nT � nN � nW þ 1
� �

; 0
� �

, where h is the characteristic flow solver grid size. The
use of the individual bands will be described in the sections below.

3.1.2. Level set transport

The level set Eq. (5) is a Hamilton–Jacobi equation. We use the fifth-order WENO scheme for Hamilton–
Jacobi equations of Jiang and Peng [23] in conjunction with a Roe flux with local Lax–Friedrichs entropy cor-
rection [36,47] to advance the level set scalar. Integration in time is performed by the third order TVD Runge–
Kutta time discretization of Shu [46] with a CFL-number of unity.

The level set transport equation is solved only inside the T -band, where, as suggested by Peng et al. [37], u
in Eq. (5) is replaced by
ucut ¼ cðGÞu; ð10Þ

with the cut-off function
cðGÞ ¼
1 : a 6 �3
2

27
a3 þ 1

3
a2 : �3 < a 6 0

0 : a > 0

8><
>: ; ð11Þ
and a ¼ jGj=Dx� nT . This ensures that no artificial oscillations are introduced at the T -tube boundaries.

3.1.3. Re-initialization

For reasons of numerical accuracy, one would like to maintain G away from the interface G ¼ 0 as smooth
a field as possible. Chopp [9] proposed defining the level set scalar away from the interface to be a signed dis-
tance function, i.e., jrGj ¼ 1. Since solution of Eq. (5) will not maintain this property, a re-initialization pro-
cedure has to be applied to force G 6¼ 0 back to jrGj ¼ 1. Several different strategies exist to achieve this, here
we use a PDE-based re-initialization [52],
oG
ot�
þ S0ðjrGj � 1Þ ¼ 0; ð12Þ
with a modified sign function S0 evaluated with G at t� ¼ 0 as [37]
S0 ¼
Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 þ jrGj2h2
G

q : ð13Þ
We solve Eq. (12) inside the T - and N -bands, using a Godunov flux function together with the same fifth-
order WENO scheme used for solving the level set transport equation in the T -band and a simple first-order
upwind scheme in the N -band. The switch to the significantly more diffusive first-order scheme in the N -band
is to avoid instabilities sometimes observed at the outside edge of the N -band when using the fifth-order
WENO scheme there. Note that in order to evaluate gradients properly at the outside edge of the N -band,
cells must exist and be active in a band surrounding the N -band. These layers of cells make up the W-band
and are used solely to be able to evaluate all gradient stencils inside the N -band.

Unfortunately, it is well known that repeated application of the PDE-based re-initialization will inadver-
tently move the G ¼ 0 isosurface and hence will not conserve fluid volume and thus fluid mass. While it is pos-
sible to construct more accurate re-initialization schemes, see for example [10], these tend to be
computationally more expensive and hard to implement efficiently in parallel [20]. It is therefore desirable
to limit the application of the PDE re-initialization procedure to situations where the divergence from G being
a signed distance function would adversely impact numerical accuracy by using an appropriate trigger
criterion.
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Here we will use a slight modification to the criterion proposed by Gomez et al. [18]. The PDE-based re-
initialization procedure is applied only if
maxðjrGjÞ > amax or minðjrGjÞ < amin; ð14Þ

evaluated inside the T -band. Also, Eq. (14) is used as a convergence criterion for the pseudo-time iteration of
the re-initialization, while still limiting the maximum number of iteration steps to nmax ¼ ðnT þ nN Þ=C, where
C ¼ 0:5 is the CFL-number used for the pseudo-time integration of Eq. (12). In the results presented in this
paper we use amax ¼ 2 and amin ¼ 10�4 unless otherwise stated. This results in typically 1–3 iteration steps until
convergence is reached, should re-initialization be triggered.

3.2. RLSG-flow solver coupling

The Navier–Stokes equations and the level set equation are solved in two separate codes employing differ-
ent domain decompositions. They thus require a parallel coupling strategy to exchange information. Here, we
use the CHIMPS code coupling infrastructure [3] to facilitate the parallel data exchange between the flow sol-
ver and the RLSG-solver. Fig. 5 summarizes the coupled time step advancement. We stagger the solution of
the level set equation and the Navier–Stokes equation in time, with the level set defined at the half time levels
and the velocity vector at the full time level.

Per time step, two data exchange operations have to be performed. In the Navier–Stokes equation, the posi-
tion of the phase interface influences two different terms. The first term is due to Eqs. (7) and (8), since HðGÞ is
a function of the position of the phase interface. For finite volume formulations, Eqs. (7) and (8) result in
qcv ¼ wcvq1 þ ð1� wcvÞq2 ð15Þ
lcv ¼ wcvl1 þ ð1� wcvÞl2; ð16Þ
with the volume fraction wcv of control volume cv defined as
wcv ¼ 1=V cv

Z
V cv

HðGÞdV ; ð17Þ
and V cv the volume of the control volume cv. In the RLSG method, the above integral is evaluated on the G-
grid as
1=V cv

Z
V cv

HðGÞdV ¼
P

iG
V cv;iGwiGP
iG

V cv;iG

; ð18Þ
where V cv;iG is the joined intersection volume of the G-grid cell iG and the flow solver control volume cv (see
Fig. 6). The G-grid volume fraction wiG is calculated using an analytical formula developed by van der Pijl
et al. [57],
Fig. 5. Coupled time step advancement.



Fig. 6. Volume integration for unstructured flow solver grid cells.
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wiG
¼

w� : GiG 6 0

1� w� : GiG > 0

�
; ð19Þ
with
w� ¼

A3�B3�C3�D3þE3

6DnDfDg
: Dn > � ^ Dg > � ^ Df > �

A2�C2

2DnDg
: Dn > � ^ Dg > � ^ Df 6 �

A
Dn

: Dn > � ^ Dg 6 � ^ Df 6 �

0 : Dn 6 � ^ Dg 6 � ^ Df 6 � ^ GiG 6¼ 0
1
2

: Dn 6 � ^ Dg 6 � ^ Df 6 � ^ GiG ¼ 0

8>>>>>>><
>>>>>>>:

; ð20Þ
where
A ¼ max
1

2
ðDn þ Dg þ DfÞ � jGiG j; 0

� �

B ¼ max
1

2
ðDn þ Dg � DfÞ � jGiG j; 0

� �

C ¼ max
1

2
ðDn � Dg þ DfÞ � jGiG j; 0

� �

D ¼ max
1

2
ð�Dn þ Dg þ DfÞ � jGiG j; 0

� �

E ¼ max
1

2
ðDn � Dg � DfÞ � jGiG j; 0

� �

ð21Þ
with
Dn ¼ maxðDx;Dy ;DzÞ; Df ¼ minðDx;Dy ;DzÞ
Dg ¼ Dx þ Dy þ Dz � Dn � Df

ð22Þ
and
Dx ¼ Dx
oG
ox

����
iG

�����
�����; Dy ¼ Dy

oG
oy

����
iG

�����
�����; Dz ¼ Dz

oG
oz

����
iG

�����
�����: ð23Þ
The joined intersection volumes V cv;iG are calculated using CHIMPS [3], employing a Sutherland–Hodgman
clipping procedure [54] to calculate the intersection volume between a Cartesian grid cell and convex tetra-,
penta- and hexahedra.

The second term that is a function of the interface position is the surface tension force term, Eq. (2). This
term could be calculated first on the G-grid, using a smoothed out version of the delta function d� and then
volume averaged to the flow solver grid,
Trcv ¼ 1=V cv

X
iG

V cv;iG TriG
¼
P

iG
V cv;iGrjiGd�ðGiGÞðrGÞiGP

iG
V cv;iG

: ð24Þ
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However, as will be seen later, this formulation is inconsistent with the balanced force algorithm. Instead,
only the interface curvature is transferred from the G-grid to the flow solver grid,
jcv ¼
P

iG
V cv;iGdiGjiGP
iG

V cv;iGdiG

; ð25Þ
where diG ¼ 0 if wiG
¼ 0 or wiG

¼ 1 and diG ¼ 1 otherwise. The use of diG ensures that j is treated as a surface
quantity and not a volume quantity. The discrete form of evaluating jiG on the G-grid will be discussed in a
later section.

In order to couple the level set equation, Eq. (5), to the Navier–Stokes equations, uiG has to be calculated
from ucv. Again the CHIMPS infrastructure is used and either tri-linear or C1, isotropic tri-cubic interpolation
[26] is employed. It should be pointed out that strictly speaking neither one of these velocity interpolations can
maintain a smooth curvature field under G-grid refinement. Let kint be the discrete approximation on the G-
grid to
kint ¼ r � ðrðuiG � nÞÞ: ð26Þ

To maintain smoothness of the curvature field, kint would have to be continuous when switching between

neighboring interpolation cells. Clearly, for tri-linear interpolation, this is not the case and even the isotropic
tri-cubic interpolation [26] does not guarantee this property, since neither o;xx nor o;yy nor o;zz are kept contin-
uous between neighboring interpolation cells. However, in the cases analyzed in this paper, tri-linear or tri-
cubic interpolation was deemed sufficient.

3.3. Flow solver balanced force algorithm

The solution method of the Navier–Stokes equations is based on the fractional-step method for collocated
variables on unstructured grids described in Mahesh et al. [29]. In the following, only the part of the algorithm
that ensures discrete balance between surface tension forces and pressure gradient forces is outlined. It is based
on the balanced force method for volume of fluid methods on collocated Cartesian grids [16].

For simplicity, we will omit the viscous term in the following discussion. The term is fully implemented and
solved for in flux form, with the viscosity at the cell face calculated by the harmonic mean of the centroid vis-
cosities of the two control volumes cv and nbr sharing the face f ,
lf ¼
2lcvlnbr

lcv þ lnbr
: ð27Þ
The algorithm then reads
V cv

u�i;cv � un
i;cv

Dt
þ
X

f

unþ1=2
f

unþ1=2
i;cv þ unþ1=2

i;nbr

2
Af ¼ V cvg þ V cvF

nþ1=2
i;cv ð28Þ

unþ1
i;cv � u�i;cv

Dt
¼ � 1

qnþ1=2
cv

opnþ1=2

oxi
; ð29Þ
where Af is the face area, uf the face normal velocity, F i;cv the density weighted surface tension force defined
below, and superscripts denote time levels.

To define the force F nþ1=2
i;cv at the control volume centroid, we first need to define the surface tension force at

the cell face,
T nþ1=2
rf

¼ rjnþ1=2
f ðrwÞnþ1=2

f : ð30Þ
Here, the face curvature is calculated from the centroid curvature, Eq. (25),
jnþ1=2
f ¼ anþ1=2

cv jnþ1=2
cv þ anþ1=2

nbr jnþ1=2
nbr

anþ1=2
cv þ anþ1=2

nbr

ð31Þ
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with
anþ1=2
cv ¼ 1 : 0 < wnþ1=2

cv < 1

0 : otherwise

(
ð32Þ
and
ðrwÞnþ1=2
f ¼ ðwnþ1=2

nbr � wnþ1=2
cv Þ=jscv;nbrj: ð33Þ
Here, scv;nbr is the vector connecting the cv and nbr control volume centroids. Then, F nþ1=2 at the face
becomes
F nþ1=2
f ¼ T nþ1=2

rf
=qnþ1=2

f ; ð34Þ
with qnþ1=2
f ¼ ðqnþ1=2

cv þ qnþ1=2
nbr Þ=2. Finally, F nþ1=2

f defined at the cell face needs to be transferred to the control
volume centroid. It is crucial that for this, one uses exactly the same operation that is used for transferring
ðop=onÞf to ðop=oxiÞcv in the pressure corrector step, Eq. (40). Here we use the face-area weighted least-squares
method of Mahesh et al. [29] by minimizing
�cv ¼
X

f

ðF nþ1=2
i;cv ni;f � F nþ1=2

f Þ2Af : ð35Þ
After solving Eq. (28) to obtain u�i;cv, the cell face normal velocities u�f are calculated,
u�f ¼
1

2
ðu�i;cv þ u�i;nbrÞni;f �

1

2
DtðF nþ1=2

i;cv þ F nþ1=2
i;nbr Þni;f þ DtF nþ1=2

f : ð36Þ
This is essentially a modification of the procedure by Kim and Choi [24], first proposed by Young et al. [60].
To correct the face intermediate face velocities u�f to be divergence free, we then solve the following variable
coefficient Poisson system,
X

f

1

qnþ1=2
f

opnþ1=2

on
Af ¼

1

Dt

X
f

u�f Af ; ð37Þ
and then apply the correction
unþ1
f ¼ u�f � DtP f ; ð38Þ
with
P f ¼
1

qnþ1=2
f

ðrpnþ1=2Þf ¼
1

qnþ1=2
f

pnþ1=2
nbr � pnþ1=2

cv

jscv;nbrj
: ð39Þ
Next, the centroid-based density weighted pressure gradient P cv is calculated from the face-based density
weighted gradient P f using the same face-area weighted least-squares method employed in calculating F f

(see Eq. (35)),
�cv ¼
X

f

ðP i;cvni;f � P f Þ2Af : ð40Þ
Finally, the control volume centroid velocity is corrected (cf. Eq. (29)),
unþ1
i;cv ¼ u�i;cv � DtP i;cv; ð41Þ
concluding the flow solver time step.
It should be pointed out that the control volume centroid velocities are not necessarily divergence free. This

has implications for the mass-conservation property of any interface tracking scheme that uses these velocities.
Indeed, as will be shown later, the non-divergence freeness of these velocities can lead to noticeable liquid vol-
ume conservation errors in certain test-cases. While staggered schemes do not have this shortcoming, collo-
cated schemes are more suited for unstructured grids in complex geometries and are thus the method of
choice here.
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In addition to the usual CFL condition on the convective terms, the flow solver is subject to the capillary
time step restriction [7], since surface tension forces are considered in an explicit way,
Dt 6 Dtcap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 þ q2Þh3

4pr

s
: ð42Þ
Here, h is the characteristic flow solver grid size.

3.3.1. Example: exact curvature equilibrium inviscid column and sphere

To illustrate the performance of the balanced force algorithm, we analyze the canonical test cases of the
equilibrium inviscid column and sphere. In this case, the surface tension forces should exactly balance the pres-
sure jump across the phase interface, resulting in the column and sphere remaining perfectly at rest.

It is instructive to analyze this test case for different grid layouts and interface tracking techniques. In cylin-
drical (spherical) coordinates, for the column (sphere) of radius R to remain at rest
op
or
¼ �rjdðr � RÞ ¼ �Cdðr � RÞ ð43Þ
must hold, with both r and j known and assumed constant, C ¼ rj ¼ const. For VoF methods on staggered
grids using the CSF method, the discrete form of Eq. (43) yields
ohp
or
¼ C

ohw
or

: ð44Þ
It is easy to see that here, if the same discrete gradient operators are used for p and w, discrete balance is
automatic and no special algorithmic steps must be taken, see for example [42,45]. For level set methods on
staggered grids using a smoothed delta function, Eq. (43) in discrete form is
ohp
or
¼ �Cd�;hðG� G0Þ: ð45Þ
Using the popular cosine approximation to d�;h [38] this does not ensure discrete balance. The solution to
this inconsistency is, however, straightforward: simply choose d�;h to be the discrete gradient of an appropriate
scalar, e.g. the exact Heaviside transform of the level set scalar as proposed by Sussman et al. [49] or even a
mollified version of the Heaviside transform [52]. Then,
ohp
or
¼ C

ohH �;hðG� G0Þ
or

; ð46Þ
and discrete balance is again automatic. As such, the schemes proposed by Sussmann et al. [52] for the stream
function formulation and Sussman et al. [49] for non-collocated grids already constitute level set balanced
force algorithms.

On collocated grids, discrete balance is not straightforward, since in the fractional step method, pressure is
used to project and correct the face velocities, see Eq. (38). Hence the pressure gradient is not directly defined
at the location of the control-volume velocities. Thus, Eq. (43) on collocated grids for VoF methods reads
ohp
or

� �
f!cv

¼ C
ohw
or

; ð47Þ
where f ! cv denotes an operation to calculate cv centroid values from face values, see Eq. (40) and the right
hand side is typically directly evaluated at the centroid position. Again, discrete balance is not achieved, unless
the balanced force methodology of Francois et al. [16] is followed, resulting in
ohp
or

� �
f!cv

¼ C
ohw
or

� �
f!cv

; ð48Þ
where the inside of both brackets is to be evaluated at the face position. For level set methods on collocated
grids the same observations as on staggered grids hold true, disqualifying the use of a smoothed delta function.
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Instead, the gradient of an appropriate scalar field must be used, e.g. either the exact or mollified Heaviside
transform of the level set scalar. This results in
Table
Errors
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Errors
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ohp
or

� �
f!cv

¼ C
ohH �;hðG� G0Þ

or

� �
f!cv

ð49Þ
and thus a balanced force algorithm on collocated grids. Throughout this paper, Eq. (48) instead of Eq. (49) is
used, since the volume fraction w is readily available.

To demonstrate the performance of the balanced force algorithm, we employ the test case parameters sug-
gested by Williams et al. [58] and used by Francois et al. [16]: a column (or sphere), of radius R ¼ 2 is placed at
the center of an 8� 8ð�8Þ domain. The surface tension coefficient r is set to 73, resulting in a theoretical pres-
sure jump across the interface of Dpex ¼ 36:5 for the column and Dpex ¼ 73 for the sphere. The density inside
the column/sphere is set to q1 ¼ 1 and the density outside the column/sphere q2 is varied. Equidistant Carte-
sian and unstructured prism and tetrahedral flow solver grids are tested. The flow solver grid is characterized
by the characteristic grid size h, whereas the equidistant Cartesian G-grid size is denoted by hG.

The error in pressure is measured in two different ways [16],
EðDpmaxÞ ¼ maxðpcvÞ �minðpcvÞ � Dpex ð50Þ
EðDppartÞ ¼ pcvjr6R=2 � pcvjrP3R=2 � Dpex; ð51Þ
where the bar indicates an arithmetic average over all control volumes fulfilling the given condition.
Table 1 summarizes the errors in velocity, pressure, and kinetic energy Ekin for the column after a single

time step of size Dt ¼ 10�6 for varying density ratios if the exact curvature of the column is used for jiG in
Eq. (25). As can be seen, both on the Cartesian and the unstructured prism flow solver grid, errors are machine
precision zero, even for extremely large density ratios.

Table 2 summarizes the same quantities in the sphere test case. Again, both on the Cartesian and the tet-
rahedral flow solver grid, machine precision zero errors are achieved for varying density ratios, if the exact
curvature is employed.

Thus, provided that the exact curvature is known, the balanced force algorithm results in machine zero spu-
rious currents, even in the inviscid case. However, the exact curvature is rarely known, instead it has to be
evaluated and is prone to errors. These curvature errors are then the sole source of error for spurious currents.
1
in velocity and pressure after single time step Dt ¼ 10�6 for varying density ratio in the inviscid, equilibrium column test case using
urvature and h ¼ hG ¼ 0:2

Cartesian Prism

L1ðuÞ Ekin EðDpmaxÞ EðDppartÞ L1ðuÞ Ekin EðDpmaxÞ EðDppartÞ
1.82e�16 1.06e�32 1.82e�16 4.58e�13 6.76e�20 6.86e�40 4.14e�16 3.41e�15
2.55e�16 7.84e�36 2.55e�16 1.97e�15 3.59e�17 6.28e�35 9.90e�14 9.21e�13
5.43e�16 8.43e�38 5.43e�16 2.29e�15 9.93e�19 2.26e�40 3.16e�16 1.58e�15
3.93e�18 3.39e�39 3.93e�18 7.40e�15 9.77e�19 1.74e�40 7.30e�16 1.19e�15

ian flow solver grid (left) and prism flow solver grid (right).

2
in velocity and pressure after single time step Dt ¼ 10�6 for varying density ratio in the inviscid, equilibrium sphere test case using
urvature and h ¼ hG ¼ 0:2

Cartesian Prism

L1ðuÞ Ekin EðDpmaxÞ EðDppartÞ L1ðuÞ Ekin EðDpmaxÞ EðDppartÞ
5.49e�17 6.95e�34 6.57e�14 1.19e�12 3.31e�16 8.20e�33 1.31e�11 1.25e�14
1.15e�17 1.40e�36 1.15e�14 9.41e�14 1.07e�15 5.96e�35 4.81e�14 1.50e�15
1.21e�16 3.30e�39 5.30e�15 1.38e�14 2.58e�15 2.76e�36 1.42e�14 1.02e�15
5.47e�16 8.24e�36 3.54e�13 2.74e�13 9.95e�11 2.73e�35 2.40e�15 5.60e�16

ian flow solver grid (left) and tetrahedral flow solver grid (right).
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3.4. RLSG curvature evaluation

As noted in the previous section, only curvature errors result in spurious currents when employing the bal-
anced force algorithm. Hence the task of minimizing spurious currents is equivalent to increasing the accuracy
of curvature evaluation. In standard level set methods [44], curvature is evaluated at G-node locations by dis-
cretizing Eq. (9),
Fig. 7
j ¼ 1=
j ¼
G2
;xxðG2

;y þ G2
;zÞ þ G;yyðG2

;x þ G2
;zÞ þ G;zzðG2

;x þ G2
;yÞ

ðG2
;x þ G2

;y þ G2
;zÞ

3=2
� 2

G;xyG;xG;y þ G;xzG;xG;z þ G;yzG;yG;z

ðG2
;x þ G2

;y þ G2
;zÞ

3=2
; ð52Þ
typically using a 27-point stencil. It is important to point out that this approach approximates the curvature of
the G-isosurface that passes through the nodal point itself. It is therefore, at best, a first-order approximation
to the curvature of the phase interface, which can be a distance hG away from nodes directly adjacent to the
interface (see Fig. 7). Figs. 8 and 9 demonstrate this first-order convergence rate under G-grid refinement for
both the column and the sphere test case using either Cartesian flow solver grids (column and sphere), unstruc-
tured prism grids (column), or tetrahedral grids (sphere) with h ¼ 0:2.

Since the root cause of the first-order convergence rate is the fact that curvature is not calculated at the
interface itself, different approaches can be taken to overcome this problem. Introducing a polynomial repre-
sentation of the interface in terms of interface-based coordinates is a viable approach in two dimensions, but
becomes cumbersome in three dimensions. Here, we will follow an alternative approach using the fact that a
quantity defined only on the interface itself, like curvature, can be distributed to the whole computational
domain in a meaningful way by solving
rj � rG ¼ 0: ð53Þ

This effectively sets j constant in the front normal direction. Note that due to Eq. (25), Eq. (53) needs to be

solved only for G-nodes adjacent to the interface. The problem is therefore similar to determining the initially
accepted values in the Fast Marching Method [2]. For this purpose, Chopp [10] developed a Newton’s method
that determines the nearest point on the interface (called ‘‘base-point” in the following) for a given node in two
dimensions. The method relies on approximating the level set scalar within each computational cell close to the
interface by a bi-cubic spline. For this purpose, G need not be a distance function. We have extended Chopp’s
method to three dimensions using C1, isotropic tri-cubic interpolations [26]. We typically find the base-point
within 2–4 Newton iterations. However, in some situations, the base-point is not in the interior of the region in
which the tricubic approximation was taken but in an adjacent region, also bounded by the same node. In this
case, the base-point is rejected, unless none of the alternative seven regions the node belongs to yields a valid
base-point. Once the base-point coordinates have been determined, the base-point’s curvature is calculated by
tri-linear interpolation using the surrounding nodal curvature values. Using Eq. (53), the nodal curvature is
then set equal to its base-point’s curvature.

The resulting curvature errors under G-grid refinement using Chopp’s method are shown in Figs. 8 and 9.
They show second-order convergence and even on coarse grids, Chopp’s method yields more than one order of
magnitude better curvature estimates than the nodal-based evaluation. The drawback of Chopp’s method is
that for complex interface geometries in three dimensions, the Newton algorithm does not always converge.
R

R1

G=0

G=R1-R
hG

. Inherent phase interface curvature error when evaluating curvature at nodes. Curvature is determined to be
R1 ¼ 1=ðRþOðhGÞÞ instead of j ¼ 1=R.
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Fig. 8. Initial column curvature errors under G-grid refinement; flow solver grid h ¼ 0:2; Cartesian flow solver grid (top), prism flow solver
grid (bottom); nodal curvature (circles), direct front curvature (squares), Chopp front curvature (triangles), first-and second-order
convergence (dashed lines).
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The method thus lacks the stability required for complex interface geometries typically found in liquid/gas
flows. Thus, the following method is proposed as an alternative.

Assuming that G is smooth in the vicinity of the phase interface, the base-point xB for a given node xG close
to the interface can be explicitly calculated from
xB ¼ xG � dn ¼ xG �
G
jrGj

rG
jrGj ; ð54Þ
where all gradients are calculated using central differences. This approach is termed direct front curvature in
the following. It gives good base-point estimates only for nodes close to the interface. However, due to the
way Eq. (25) is evaluated, j needs to be calculated only on nodes close to the interface, making the direct front
curvature method viable. As before, once base-points have been determined, their curvature is again calculated
using tri-linear interpolation from the surrounding nodal curvature values. Then, according to Eq. (53), the
curvature values of nodes are set to their respective base-points’ curvature values. Figs. 8 and 9 also include
the curvature errors calculated by the direct method. As can be seen, they are virtually indistinguishable from
the values obtained using Chopp’s method yielding second-order convergence.

Comparing the obtained curvature errors to those calculated by Francois et al. [16], both Chopp’s and the
direct method give curvature errors an approximate factor of 5 lower than the 7� 3 stencil height function
method employed in that paper. While a height function approach could be employed in the RLSG method
as well, since volume fractions w are readily available, the effective G-stencil needed would be 9� 5� 5 (cf.
Eqs. (17)–(19)), as compared to 4� 4� 4 in the direct front curvature method. Smaller stencil sizes are espe-
cially important for complex interface geometries, since both the height function and all level set curvature
methods are based on the assumption that all w and G values in the stencil relate to one continuous interface
segment only. Auxiliary, non-contiguous, interface segments inside the stencil can introduce significant errors.
These can only be avoided by temporarily removing the auxiliary interface segments during curvature
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calculation. Such methods have been recently proposed by Macklin and Lowengrub [28] for level sets and
Sussman and Ohta [50] for height functions.

In the following, we will employ the direct front curvature method to calculate nodal curvature values on
the G-grid. Fig. 10 shows the errors in velocity and pressure after a single time step of size Dt ¼ 10�6, using
q1 ¼ 1 and q2 ¼ 10�3 and refining the resolution hG of the G-grid. As expected, due to the balanced force algo-
rithm, errors in curvature evaluation result in errors in velocity and pressure, showing the same second-order
convergence behavior (cf. Figs. 8 and 9).
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Fig. 10. Equilibrium inviscid column and sphere velocity (circle) and pressure (triangle) errors after 1 time step Dt ¼ 10�6 under G-grid
refinement; flow solver grid h ¼ 0:2, density ratio q1=q2 ¼ 103; from left to right: column Cartesian flow solver grid, column prism flow
solver grid, sphere Cartesian flow solver grid and sphere tetrahedral flow solver grid; dashed lines mark second-order convergence.
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3.5. RLSG parallel implementation and load balancing

Parallel efficiency and scalability is key to allow extremely high resolution G-grids. In typical applications
involving tracked interfaces, interfaces make up a small fraction of the flow solver volume only. Furthermore,
the region occupied by the interface is not static. An efficient domain decomposition strategy for the flow sol-
ver is thus usually inefficient for the RLSG solver and vice versa. Dual constraint partitioning is possible, how-
ever, the dynamic movement of the interface through the flow solver domain would require frequent joined
repartitioning of the G-grid and the otherwise static flow solver grid. Therefore, we propose to use independent
partitioning for the flow solver grid and the G-grid. The former is domain decomposed at the beginning of a
simulation and retains its partitioning throughout the simulation. The latter is dynamically decomposed and
load balanced throughout the simulation, once a load-imbalance factor is greater than some threshold value.

Domain decomposition of the G-grid is straightforward using the super-grid. At the beginning of the sim-
ulation, all super-grid cells, active or not, are assigned to a processor and the negative value of the processor
rank is stored in a super-grid i, j, k lookup table that is synchronized on all processors. Thus, if a band grows
into a previously not activated super-grid block, a unique processor is already assigned to this block. After the
band regeneration step, this strategy can lead to a load-imbalance in terms of number of local active cells
inside the T -and N -band. To re-loadbalance, the processor with the largest number of active cells sends its
super-grid block containing the most active cells to the processor with the smallest number of active cells. This
process is repeated until either the threshold imbalance factor is reached, or the load balance does not decrease
any more. Then, the super-grid i, j, k lookup table is synchronized to reflect any changed super-grid block pro-
cessor ranks. Note that more advanced strategies also minimizing the domain edge count can be devised, how-
ever the strategy outlined above leads to good parallel performance and load-balance. Fig. 11 shows the
parallel scalability of the RLSG solver using Zalesak’s disk test case described in a later section with a Carte-
sian flow solver grid of h ¼ 1=128 and a G-grid of hG ¼ 1=1024. A nearly constant, although slightly sub-opti-
mal speed-up is observed over all counts of processors np.

4. Results

This section presents a range of test cases to illustrate the ability of the proposed method. First, two canon-
ical interface tracking test cases with prescribed velocity fields are presented to test the interface tracking capa-
bilities of the RLSG method. Then, the balanced force algorithm in conjunction with the refinement and grid
convergence capabilities of the RLSG method is tested by calculating the long-time evolution of inviscid and
viscous columns and spheres. Following, results for zero-gravity oscillating columns and spheres are pre-
sented. Next, the interplay of viscous and surface tension forces is verified using the analytical solution of a
damped surface wave. Finally, to demonstrate the capability of the proposed method to eliminate interface
tracking errors and to achieve grid converged solutions the results of a Rayleigh–Taylor study are presented.
1
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100

1 10 100
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sp
ee

d-
up

Fig. 11. RLSG distributed memory parallel speed-up for Zalesak’s disk, h ¼ 1=128 and hG ¼ 1=1024; line denotes optimal results, symbols
marks RLSG solver results.
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In the following subsections, h denotes the edge length of a flow solver grid element, be it a Cartesian hexa-
hedral, prism, or tetrahedral element and hG denotes the edge length of an equidistant Cartesian G-grid cell.
All simulations are formally performed in three dimensions, however, if the test-case is not inherently three-
dimensional, the third direction is resolved by a single element using periodic boundary conditions in that
direction. The total liquid volume is calculated from the flow solver volume fractions:
Fig. 12
to righ
V 1ðtÞ ¼
X

cv

wcvðtÞV cv; ð55Þ
resulting in the following definition of the volume error EV and % volume loss,
EV ¼
jV 1ðt ¼ 0Þ � V 1ðtÞj

V 1ðt ¼ 0Þ ð56Þ

%volume loss ¼ V 1ðt ¼ 0Þ � V 1ðtÞ
V 1ðt ¼ 0Þ � 100%: ð57Þ
The shape error Eshape is a measure for the amount of fluid that has propagated to the wrong side of the
exact interface location. It is calculated by first dividing each G-grid cell into 1000 sub-cells in each coordinate
direction, using tri-linear interpolation to calculate the level set scalar value Gs at each sub-cell centroid and
then evaluating
EshapeðtÞ ¼
1
L

P
iG

P
sub-cellsjHðGsðtÞÞ � HðGsðt ¼ 0ÞÞjV sub-cell

2
P

iG
V iG

; ð58Þ
with L the exact interface length or area at t ¼ 0.

4.1. Zalesak’s disk

The solid body rotation of a notched circle, also known as Zalesak’s disk [61], is one of the standard test
problems for evaluating the accuracy of level set methods in maintaining sharp corners. A disk of radius 15,
notch width 5 and notch height 25 is placed in a 100� 100 box at (50, 75). The velocity field is given by
uðx; tÞ ¼ ð50� y; x� 50ÞT ð59Þ

and the flow solver constant time step size is set to Dt ¼ 2p=628. Fig. 12 shows the shape of the interface at
t ¼ 2p after one full rotation of the disk using an equidistant Cartesian flow solver grid with h ¼ 1. Due to the
linearity of the imposed velocity field, results for the flow solver prism grid are identical to those of the Carte-
sian flow solver grid and are thus not shown here. As is typical of level set methods, the sharp corners of the
notched disk tend to be rounded, however, the overall shape of the notch is well preserved, even on the coars-
est G-grid of hG ¼ 1. Refining the G-grid continuously improves the shape, until for the finest G-grid resolu-
tion visually no difference can be discerned to the exact solution. Table 3 summarizes the volume and shape
errors for the different G-grid resolutions. It should be pointed out that the volume (or area) error in this par-
ticular test case is not a good criterion, since the simultaneous rounding of all four sharp corners leads to a
90
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. Zalesak’s disk after one full rotation with h ¼ 1; exact solution (thin line) and hG ¼ 1, hG ¼ 1=2, hG ¼ 1=4 and hG ¼ 1=8 (from left
t).



Table 3
Volume and shape errors of Zalesak’s disk after one full rotation with h ¼ 1

hG % Volume loss Eshape Ordershape

1 �0:461 0:1611 –
1/2 0:101 0:0419 1.94
1/4 �0:013 0:0144 1.54
1/8 �0:007 0:0045 1.66
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simultaneous volume loss and gain that can cancel. It is thus given for completeness only. The obtained shape
error is comparable to that obtained using a HJ particle level set method [14] when using a factor two refined
G-grid (hG ¼ 1=2) for the level set scalar. However, refining the G-grid, the shape error can be significantly
reduced resulting in error levels that are significant smaller than the particle level set method.

4.2. Column in a deformation field

The column or circle in a deformation field problem introduced by Bell et al. [5] and applied as a level set
test problem by Enright et al. [13] tests the ability of the level set method to resolve and maintain ever thinner
filaments. A column of radius R0 ¼ 0:15 and center ð0:5; 0:75ÞT is placed inside a unit sized box. The velocity
field is given by the stream function
Fig. 13
hG ¼ 1
Wðx; tÞ ¼ 1

p
sin2ðpxÞ cos2ðpyÞ cosðpt=T Þ: ð60Þ
The resulting velocity field first stretches the column into ever thinner filaments that are wrapped around
the center of the box, then slowly reverses and pulls the filaments back into the initial circular shape. All sim-
ulations are performed on a flow solver grid with h ¼ 1=128 and T ¼ 8 using a constant flow solver time step
of Dt ¼ 1=256. Fig. 13 shows the interface shape at the moment of maximum extension t ¼ 4 for varying G-
grid resolutions, while Fig. 14 shows the interface shape at t ¼ 8 after reversal has been completed. For com-
parison purposes, the thin line in the figures denotes a high-resolution solution obtained using h ¼ 1=512 and
hG ¼ 1=2048. Two regions where errors predominantly occur are easy to identify: the trailing and the leading
edge of the filament. The volume in those regions corresponds to the upper region and the lower region respec-
tively of the initial column. The underlying reason for the poor volume conservation in the coarse G-grid case
(hG ¼ 1=128) is twofold. For one, the incorrect merging of characteristics in the transport step, but especially
during re-initialization moves the interface, resulting in annihilation of thin filament structures. But even if
perfect transport and re-initialization could be performed, the hG ¼ 1=128 solution would loose significant
amounts of volume because the trailing filament thickness falls below the grid resolution of hG ¼ 1=128
and is thus not resolvable by a fixed grid method.

Continuously refining the G-grid results in ever better shape and volume preservation, resulting in roughly
second-order grid convergence under G-grid refinement, see Table 4. The obtained results compare well to the
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. Interface shape of column in a deformation field at t ¼ T=2, h ¼ 1=128; target solution (thin line) and hG ¼ 1=128, hG ¼ 1=256,
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Fig. 14. Interface shape of column in a deformation field at t ¼ T , h ¼ 1=128; target solution (thin line) and hG ¼ 1=128, hG ¼ 1=256,
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Table 4
Volume and shape errors of a column in a deformation field at t ¼ T with Cartesian flow solver grid and h ¼ 1=128

hG % Volume loss Order Eshape Order

1/128 30:86 – 0:02315 –
1/256 4:61 2.74 0:00363 2.67
1/512 1:00 2.20 0:00084 2.11
1/1024 0:28 1.87 0:00024 1.81
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HJ particle level set method [14], resulting in slightly larger errors for a factor 2 finer G-grid and slightly smal-
ler errors for a factor 4 refined G-grid.

Table 5 summarizes the results obtained using a prism flow solver grid. Since the prescribed velocity field is
not linear, the employed tri-linear interpolation on a Cartesian and a prism element causes minute differences.
While the interface shapes presented in Figs. 13 and 14 look visually identical, the error norms show a slight
increase in error for the prism case.

4.3. Long-time evolution of the equilibrium inviscid column and sphere

As shown in Section 3.3, errors in curvature evaluation result in spurious currents that are small, but non-
zero. Thus, the long-time behavior of the equilibrium column and sphere is of interest, since errors might accu-
mulate and result in large erroneous velocities.

Fig. 15 shows the temporal evolution of the kinetic energy in the computational domain for both the invis-
cid column and sphere on Cartesian and unstructured flow solver grids. The flow solver characteristic grid size
is h ¼ 0:4 in all simulations, q1 ¼ 1, q2 ¼ 10�3, r ¼ 73 and the fixed time step size is Dt ¼ 10�3. As observed by
Francois et al. [16], the column seems to enter an oscillatory mode that appears quite stable on a Cartesian
flow solver grid (top left), but shows a slight growth on the prism flow solver grid (top right). The inviscid
sphere results, on the other hand, do not exhibit such a clear periodic behavior. In the Cartesian flow solver
grid case, different periods seem to be superposed and the unstructured tetrahedral grid shows an increase in
kinetic energy without reaching a periodic state. This is due to the fact that the unstructured grid lacks the
symmetry of the Cartesian grids. This symmetry seems to initiate a periodic oscillation instead of a constant
growth in spurious currents and is thus beneficial in this particular test case, but not indicative of the method’s
Table 5
Volume and shape errors of a column in a deformation field at t ¼ T with prism flow solver grid and h ¼ 1=128

hG % Volume loss Order Eshape Order

1/128 30:98 – 0:02325 –
1/256 4:64 2.74 0:00370 2.65
1/512 1:03 2.17 0:00088 2.07
1/1024 0:28 1.88 0:00026 1.76
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performance in a more general setting. In the general case, one can expect a growth of the kinetic energy along
the lines of the unstructured grid results, necessitating at later times the use of viscous dissipation to control
the spurious currents. However, the balanced force method exhibits very low levels of spurious currents and
indeed, this level can be made even smaller if the G-grid is refined to increase the accuracy of the interface
curvature evaluation. Fig. 16 shows the convergence rates for the maximum velocity error under G-grid refine-
ment, using a flow solver resolution of h ¼ 0:4. Close to second-order convergence can be observed both on
structured and unstructured flow solver grids.

4.4. Long time evolution of the viscous equilibrium column and sphere

To evaluate the performance of the proposed RLSG balanced force method as compared to other numer-
ical methods, we perform simulations of the long time evolution of viscous columns and spheres at equilib-
rium. A column of diameter D ¼ 0:4 is placed in the center of a unit sized box resolved by either Cartesian
column column sphere sphere
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0.1 1
hG

0.1 1
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0.1 1
hG

Fig. 16. Equilibrium inviscid column and sphere maximum velocity error during 500 time steps under G-grid refinement; flow solver grid
h ¼ 0:4, density ratio q1=q2 ¼ 103; from left to right: column Cartesian flow solver grid, column prism flow solver grid, sphere Cartesian
flow solver grid and sphere tetrahedral flow solver grid; dashed lines mark first and second-order convergence.
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or prism cells with h ¼ 1=32. The viscosity in both fluids is set to l ¼ 0:1 and the surface tension coefficient is
set to r ¼ 1. The Laplace number La ¼ 1=Oh2 ¼ rqD=l2 is varied by changing the density in both fluids, keep-
ing the density ratio fixed as q1=q2 ¼ 1. The time step size is chosen to be Dt ¼ Dtcap=2, see Eq. (42). Table 6
compares the capillary number Ca ¼ jumaxjl=r for varying Laplace numbers at tr=ðDlÞ ¼ 250 using a Carte-
sian flow solver grid to the benchmark results of Popinet and Zaleski [39] using a marker tracking method and
Shin et al. [45] using a level contouring approach. The table also shows results obtained on the prism grid com-
pared to the results of Marchandise et al. [30] employing a finite element method on a slightly finer unstruc-
tured grid. Results with the RLSG method show more than one order of magnitude smaller spurious currents
for smaller values of the Laplace numbers on Cartesian grids and more than two-orders of magnitude better
results on non-Cartesian grids. However, at very large Laplace numbers, the present results are not fully inde-
pendent of the Laplace number due to small, decaying periodic oscillations in the spurious current magnitude
that are present in the inviscid case as well, see Fig. 15.

Table 7 analyzes the grid convergence behavior. Again, the spurious currents of the RLSG method are sig-
nificantly lower than those reported by Popinet and Zaleski [39] and convergence under grid refinement is
roughly second order. Table 8 demonstrates that the reported capillary numbers are virtually independent
of the chosen time step size, even for timestep sizes close to the stability limit.

Finally, Table 9 shows the spurious current capillary number for a fixed flow solver grid under G-grid
refinement using a time step of Dt ¼ 0:9Dtcap with Dtcap based on the flow solver grid size h ¼ 1=16. The results
demonstrate that the capillary time step restriction is not based on the RLSG grid size hG, but rather on the
flow solver grid size h as expected, since at the finest G-grid (hG ¼ 1=128), the employed time step is more than
20 times larger than a stable capillary time step based on hG. Overall convergence under G-grid refinement is
approximately first order.

As a three dimensional test, the viscous sphere of Renardy and Renardy [42] is calculated. Here, a sphere of
diameter D ¼ 0:25 is placed at the center of a unit sized Cartesian box with symmetry boundary conditions at
all sides. The surface tension coefficient is set to r ¼ 0:357, density and viscosity in both fluids are q ¼ 4 and
Table 6
Dependence of the spurious current capillary number on the Laplace number for viscous equilibrium column and D=h ¼ D=hG ¼ 12:8 as
compared to Popinet and Zaleski [39] and Shin et al. [45] on Cartesian grid (top) and Marchandise et al. (D=h ¼ 16) [30] on prism grid

La

12 120 1200 12,000 120,000 1,200,000

Ca Cartesian 0.10e�6 0.11e�6 0.12e�6 1.44e�6 3.09e�6 0.71e�6
Ca [39] 6.76e�6 5.71e�6 5.99e�6 8.76e�6 – –
Ca [45] 2.18e�6 2.18e�6 2.18e�6 2.22e�6 – –
Ca prism 0.15e�6 0.15e�6 0.16e�6 2.17e�6 3.93e�6 0.96e�6
Ca [30] 85.1e�6 86.2e�6 85.9e�6 83.1e�6 – –

Table 7
Grid convergence of the spurious current capillary number for viscous equilibrium column and 1=Oh2 ¼ 12; 000 compared to the results by
Popinet and Zaleski [39]

h; hG

1/16 1/32 1/64 1/128

Ca 4.92e�6 1.44e�6 0.34e�6 0.05e�6
Ca [39] 37.60e�5 6.68e�6 1.07e�6 0.12e�6

Table 8
Time step convergence of the spurious current capillary number for viscous equilibrium column at h ¼ hG ¼ 1=32 and 1=Oh2 ¼ 1200

Dt=Dtcap

1 1/2 1/4 1/8

Ca 0.12e�6 0.12e�6 0.12e�6 0.13e�6



Table 9
Grid convergence of the spurious current capillary number for viscous equilibrium column, 1=Oh2 ¼ 12; 000 and fixed flow solver grid
h ¼ 1=16

hG

1/16 1/32 1/64 1/128

Ca 4.92e�6 4.46e�6 2.10e�6 8.92e�7
Order – 0.14 1.09 1.24
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l ¼ 1, resulting in a Laplace number of 1=Oh2 ¼ 0:357. The time step size is Dt ¼ 10�5 and the simulation is
run for 200 time steps. Table 10 compares the maximum spurious current capillary number at t ¼ 0:002 to
those obtained by Renardy and Renardy [42] using the PROST volume of fluid algorithm on a staggered
mesh. Although the RLSG method results in slightly smaller values, both methods yield comparable, high
quality results.

4.5. Zero gravity column/drop oscillation

To further verify the implementation of the balanced force algorithm, this section presents results for zero
gravity oscillating columns and spheres. The theoretical oscillation period for columns in the linear regime is
given by [25]
Table
Grid c
[42]

Ca

Ca [42
x2 ¼ nðn2 � 1Þr
ðq1 þ q2ÞR3

0

; ð61Þ
while that for spheres can be calculated from [25]
x2 ¼ nðn2 � 1Þðnþ 2Þr
½ðnþ 1Þq1 þ nq2�R3

0

: ð62Þ
In all simulations a column respectively sphere of radius R0 ¼ 2 is placed in the center of a ½�10; 10� square
box with slip boundary conditions on all sides and r ¼ 1, q1 ¼ 1, q2 ¼ 0:01, l1 ¼ 0:01 and l2 ¼ 1 � 10�4,
resulting in a Laplace number of La ¼ 20000. The column/sphere is initially perturbed by a mode n ¼ 2 per-
turbation with an initial amplitude of A0 ¼ 0:01R0. The time step size in all simulations is chosen as
Dt ¼ 0:5Dtcap.

Table 11 shows the period of oscillation error ET ¼ jT calcx=2p� 1j for the oscillating column together with
the results reported by Torres and Brackbill [55], whereas Table 13 lists the corresponding results for the oscil-
lating sphere. Results better by a factor of roughly 2 are obtained even on prism grids as compared to the
results reported in [55] and the oscillating sphere results show second order grid convergence. Table 12 ana-
lyzes the temporal convergence. Simulations are stable even at the capillary time step limit and show slightly
better than first order convergence under time step refinement.

4.6. Damped surface waves

To verify the interplay of the surface tension term with the viscous terms we compare the results of the pro-
posed method to the initial value theory of Prosperetti [40] for a small amplitude damped surface wave
10
onvergence of the spurious current capillary number for viscous equilibrium sphere with parameters due to Renardy and Rendary

h; hG

1/96 1/128 1/160 1/192

4.82e�5 3.44e�5 2.02e�5 1.43e�5
] 6.28e�5 3.67e�5 2.67e�5 1.59e�5



Table 11
Zero gravity 2D column oscillation

h; hG

20/64 20/128 20/256

ET Cartesian 4.04e�2 1.05e�2 0.37e�2
ET prism 5.91e�2 1.65e�2 1.36e�2
ET [55] 13.2e�2 6.1e�2 1.5e�2

Error in oscillation period as compared to linear theory [25].

Table 13
Zero gravity 3D sphere oscillation

h; hG

20/64 20/96 20/128 20/160

ET 8.50e�2 3.85e�2 2.08e�2 1.19e�2
Order – 1.95 2.14 2.50

Error in oscillation period on Cartesian grid as compared to linear theory [25].

Table 12
Zero gravity 2D column oscillation

Dt=Dtcap

1 1/2 1/4 1/8

ET 4.26e-2 4.04e-2 3.90e-2 3.85e-2

Error in oscillation period on Cartesian grid h ¼ hG ¼ 20=64 as compared to linear theory [25].

M. Herrmann / Journal of Computational Physics 227 (2008) 2674–2706 2697
between two superposed immiscible fluids. The initial surface position inside a ½0; 2p� � ½0; 2p� box is given by a
sinusoidal disturbance of wavelength k ¼ 2p and amplitude A0 ¼ 0:01k,
Gðx; t ¼ 0Þ ¼ y � y0 þ A0 cosðx� hG=2Þ; ð63Þ

with y0 ¼ p. Periodic boundary conditions are used in the x-direction and slip walls are imposed in the y-direc-
tion. The initial value solution for two fluids with equal kinematic viscosity m and k ¼ 2p can be written as [40]
AexðtÞ ¼
4ð1� 4bÞm2

8ð1� 4bÞm2 þ x2
0

A0erfc
ffiffiffiffi
mt
p
þ
X4

i¼1

zi

Zi

x2
0A0

z2
i � m

� �
exp½ðz2

i � mÞt�erfcðzi

ffiffi
t
p
Þ; ð64Þ
where zi are the roots of
z4 � 4b
ffiffiffi
m
p

z3 þ 2ð1� 6bÞmz2 þ 4ð1� 3bÞm3=2zþ ð1� 4bÞm2 þ x2
0 ¼ 0; ð65Þ
the dimensionless parameter b is given by b ¼ q1q2=ðq1 þ q2Þ
2, the inviscid oscillation frequency is

x0 ¼
ffiffiffiffiffiffiffiffiffi

r
q1þq2

q
and Zi ¼

Q4
j¼1
j 6¼i
ðzj � ziÞ.

We analyze two different cases for r ¼ 2, the first where both fluids have equal density, q1 ¼ q2 ¼ 1 and
m ¼ 0:064720863, and the second where the two fluids have a high density ratio, q1 ¼ 1000, q2 ¼ 1 and
m ¼ 0:0064720863. Results are obtained using a fixed time step size of Dt ¼ 0:003 in the equal density case
and Dt ¼ 0:06 in the high density ratio case. In both cases we perform at least one re-initialization step per
time step, i.e. we force the initial re-initialization trigger condition to be true, cp. Fig. 2.

Fig. 17 shows the temporal evolution of the non-dimensional disturbance amplitude A measured at
x ¼ hG=2 under flow solver and G-grid refinement for both a Cartesian and a prism flow solver grid for
the case of equal densities, whereas Fig. 18 shows the evolution of the corresponding non-dimensional error
EðtÞ ¼ ðAðtÞ � AexðtÞÞ=A0 and Table 14 summarizes its root mean square. The results show that for the
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Table 14
Rms amplitude errorErmso f d a m p e d

k = h , k = h G C a r t e s i a n g r i d

1 6 0 . 1 1 1 6 0 . 1 7 4 2
3 2 0 . 0 2 9 5 0 . 0 7 7 3
6 4 0 . 0 1 1 4 0 . 0 3 1 3
1 2 8 0 . 0 0 6 7 0 . 0 1 8 5

2 6 9 8 M . H e r r m a n n / J o u r n a l o f C o m p u
coarsest grids of h ¼ hG ¼ k=16, the oscillation frequency is not predicted well resulting in large errors in
amplitude. However, refining both the flow solver and the G-grid results in excellent agreement with the
theory. Comparing the amplitude errors to those reported in Gueyffier et al. [19] using a VoF method,
the present results are superior on the Cartesian grid and similar on a prism grid of comparable h. Also,
the reported divergence for wave amplitudes smaller than the grid size h was not observed here, indicating
that the level set based interface tracking scheme handles sub-grid size disturbances to the interface geom-
etry stably and more accurately. Comparing the results to those reported in Popinet and Zaleski [39] using a
marker particle method, the present results on a Cartesian grid yield slightly worse results for coarse grids
and almost identical results on the finest grid. The results reported by Gerlach et al. [17] using the PROST
method show surprisingly high grid convergence rates and are thus at least one level of grid refinement bet-
ter than the reported results.
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Fig. 17. AmplitudeAof damped surface wave withq 1=q 2 ¼1; Cartesian grid (left) and prism grid (right) withh¼h G ¼k=16 (dashed),¼k=32 (dash-dot),h¼h G ¼k=64 (dotted),h¼h G ¼k=128 (solid) and theory (thin line).and prism grid (right) withh¼hG¼k=16
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Figs. 19 and 20 show the temporal evolution of the amplitude and the amplitude error for the high density
ratio case, where as Table 15 summarizes the rms of the amplitude error. In the past, comparisons to the initial
value theory have been limited to equal densities or small density ratios of the order of 10, the exception being
Oevermann et al. [35] that studied a density ratio of 100. However, they report a large difference in frequency
to the theoretical result that increases with increasing density ratio. Here, the results obtained with the RLSG
method are in very good agreement with the theoretical predictions both on the Cartesian and the prism flow
solver grid. Note that under grid refinement, the amplitude errors do not appear to converge to the exact the-
oretical solution, but rather appear to converge to a solution consistent with a slightly different frequency. This
difference in frequency is however orders of magnitude smaller than that reported in Oevermann et al. [35]. Its
interesting to point out that both marker particle [39] and VoF results [19] show similar slow convergence rates
for a low density ratio of 10.
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Table 15
Relative rms error Erms=A0 of damped surface wave amplitude for q1=q2 ¼ 1000 and t < 450

k=h, k=hG Cartesian grid Prism grid

16 0.0482 0.0564
32 0.0208 0.0141
64 0.0127 0.0113
128 0.0118 0.0157
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4.7. Rayleigh–Taylor instability

To demonstrate the performance of the proposed method in a more complex flow, a Rayleigh–Taylor
instability is computed. This is a common test problem performed by a variety of different methods
[6,18,39,41]. A heavy fluid, q1 ¼ 1:225, l1 ¼ 0:00313, is placed above a light fluid, q2 ¼ 0:1694, l2 ¼
0:00313, inside a domain of size 1 � 4. The interface between the two fluids is placed in the middle of the
domain and is perturbed by a cosine wave of amplitude 0.05. The gravity constant is set to g ¼ 9:81. We
set the time step size constant to Dt ¼ 2:5 � 10�4 and simulate up to t ¼ 0:9. Fig. 21 shows the interface shape
at different instances in time for a Cartesian flow solver grid of h ¼ 1=512 and a G-grid of hG ¼ 1=512. As will
be demonstrated below, this grid resolution ensures grid converged results and thus will be used as a reference
solution in the following.

Figs. 22–24 show the interface shape for different resolutions of the Cartesian flow solver grid and G-grid,
whereas Figs. 25–27 show the corresponding results for prism flow solver grids. Using the coarsest Cartesian
flow solver grid of h ¼ 1=64 presented in Fig. 22, one can already notice deviations from the reference solution
at early times. While the stem and bubble shape is well captured, the fine scale geometry of the side arms is not
well maintained. Up to t ¼ 0:8, there appears almost no difference between the results using hG P 1=128. This
indicates that the deviations from the reference solution are due to errors in the flow representation and not
due to errors in the interface tracking scheme. However, at t ¼ 0:9, the very fine connecting bridge at the side
arms can only be maintained by hG ¼ 1=512. Note that except for the difference in the details of the connecting
bridge, the larger scale geometric features are consistent between different G-grid resolution with hG P 1=128.
Fig. 25 shows the corresponding results for a prism flow solver grid of h ¼ 1=64. The obtained interface shapes
are noticeable worse than in the Cartesian case showing deviations even in the lower stem and bubble shape.
Again, good interface grid convergence is achieved for hG P 1=128 up to t ¼ 0:8, indicating that the observed
deviations from the reference solution are due to insufficient flow solver resolution. Note that at t ¼ 0:9, the
hG ¼ 1=512 grid is not able to maintain the thin connecting bridge, since it is thinner than the reference
solution.

At a Cartesian flow solver grid of h ¼ 1=128 presented in Fig. 23, virtually no difference can be discerned
between the reference solution and G-grid resolutions of hG P 1=128 up to t ¼ 0:8. At t ¼ 0:9, however, the
t = 0.5 t = 0.6 t = 0.7 t = 0.8 t = 0.9

Fig. 21. Rayleigh–Taylor instability interface shapes for reference solution,h ¼ h¼ 1=512.
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thin connecting bridge is only supported by hG ¼ 1=512. Comparing the results at t ¼ 0:9 of h ¼ 1=128 to
those of h ¼ 1=64 (cf. Fig. 22), the finer grid flow solver results capture the shape of the interface significantly
better. This indicates that the flowfield is well resolved by the h ¼ 1=128 grid. This conclusion is even more
evident in the prism flow solver case when comparing the h ¼ 1=128 solution, Fig. 26, to the h ¼ 1=64 solution,
Fig. 25. At h ¼ 1=128 both the stem shape and the bubble shape are well captured. Yet, although the interface
shapes converge well for hG 	 1=256, there still exists a noticeable difference to the reference solution at the
outside edges of the bubble, indicating that the employed prism grid might be insufficient to resolve the fine
scale flow field there.
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Fig. 24. Rayleigh–Taylor instability interface shapes under G-grid refinement hG ¼ 1/256 and 1/512 (left to right in each group) at t ¼ 0.6,
0.7, 0.8 and 0.9 (left to right) and Cartesian flow solver grid h ¼ 1=256. Thin line denotes reference solution.
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Refining the Cartesian flow solver grid further to h ¼ 1=256, presented in Fig. 24, virtually no difference to
the reference solution can be discerned, with the exception of hG ¼ 1=256 at t ¼ 0:9, where again the complete
fine connecting bridge is not supported by that G-grid resolution. Nonetheless, those parts of the bridge that
can be maintained by the grid are in excellent agreement with the reference solution. A similar conclusion can
be drawn for the prism flow solver grid with h ¼ 1=256. Although not yet in full agreement with the reference
solution, the interface shapes clearly converge to the reference solution under flow solver grid refinement.

To ascertain the volume/mass conservation properties of the method, Fig. 28 depicts the volume error EV

for the Cartesian flow solver solutions. Except for hG ¼ 1=512, all solutions show an increase in error at late
times. This is due to the disappearance of the thin connecting bridge. Also, at constant flow solver grid size h
and G-grid refinement, the volume errors converge to a non-zero value. Furthermore, the converged error
decreases when increasing the flow solver grid resolution. This indicates the two sources of this error.
First, uiG is based on interpolation of the flow solver cell center velocities unþ1

cv which, in a collocated
scheme, are not guaranteed to be divergence free. Second, the interpolation scheme itself can add additional
divergence to the interpolated velocities uiG . While the former inconsistency is hard to address in a collocated
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t ¼ 0.6, 0.7, 0.8 and 0.9 (top left to bottom right) and prism flow solver grid h ¼ 1=128. Thin line denotes reference solution.
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unstructured flow solver, except by an additional projection-correction of the cell center velocities used for
interpolation, the latter inconsistency can be addressed by improved, divergence preserving interpolation
schemes. Nonetheless, the observed volume errors on fine G-grids are very small and well within acceptable
limits.

5. Conclusion

A balanced force RLSG method has been presented for structured and unstructured flow solver grids. The
interface location is tracked using a level set method solved on an auxiliary, high-resolution, equidistant Carte-
sian grid. A parallel dual-narrow band approach ensures that fine enough grids can be employed to control
liquid volume conservation errors and to enable grid convergence studies with respect to interface tracking
errors. The employed balanced force method ensures machine precision zero spurious currents on unstruc-
tured grids for arbitrary density ratios if the curvature can be evaluated exactly. Spurious current magnitude
is directly related to errors in the evaluation of the interface curvature. To minimize spurious currents in actual
applications, a robust second-order converging curvature evaluation scheme has been presented.
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